

Report No. THSH19031117177-EN

Applicant : Shanghai Hezhou Communication Technology Co., Ltd

Address : 26A, West Building, No. 668, Beijing East Road, Huangpu District, Shanghai

Sample Name : LTE Module

Tested Model : Air720 Sample Receiving date : 2019-03-11

Test period : 2019-03-11 to 2019-03-19

Test Requirement : The Restriction of the Use of Certain Hazardous Substances in

Electrical and Electronic Equipment, RoHS Directive 2011/65/EU and its

Date: Mar. 19, 2019

amendment Directive (EU) 2015/863.

Test Method : Please refer to next page(s).

Test result : Please refer to next page(s).

Conclusion : PASS

Based on the verification results of the submitted sample(s), the results of Lead(Pb), Cadmium(Cd), Mercury(Hg), Hexavalent Chromium(CrVI), Polybrominated biphenyls(PBBs), Polybrominated diphenyl ethers (PBDEs),

Dibutyl phthalate(DBP), Butyl benzyl phthalate(BBP), Di-2-ethylhexyl

phthalate(DEHP) and Di-iso-butyl phthalate(DIBP) content comply with the requirements as set by RoHS Directive 2011/65/EU and its amendment

Directive (EU) 2015/863.

Note : The test results are related only to the tested items.

d on behalf of

hai Global Testing Services Co., Ltd.

Authorized Signature

Shi Lei/Kevin

pproved Signatory -GTS/SHO

Report No. THSH19031117177-EN

Test Method:

- 1. Disassembly, disjointment and mechanical sample preparation
 - -Ref. to IEC 62321-2: 2013, Disassembly, disjointment and mechanical sample preparation.
- 2. With reference to IEC 62321-1: 2013, tests were performed for the samples indicated by the photos in this report.
- (1) Screening Lead, mercury, cadmium, total chromium and total bromine
 - -Ref. to IEC 62321-3-1: 2013, Screening for Lead, mercury, cadmium, total chromium and total bromine by X-ray fluorescence spectrometry.
- (2) Wet chemical test method
 - a. Total Lead, Cadmium, Chromium and Mercury content
 - Ref. to IEC 62321-4: 2013, determination of Mercury in polymers, metals and electronics by ICP-OES.
 - Ref. to IEC 62321-5: 2013, determination of Cadmium, lead and chromium in polymers and electronics and cadmium and lead in metals by ICP-OES.
 - b. Chromium (VI) content
 - —For Colourless and coloured corrosion-protected coatings on metals, Ref. to IEC 62321-7-1: 2015, determination of presence of hexavalent chromium (Cr(VI)) in colourless and coloured corrosion-protected coatings on metals by the colorimetric method.
 - For polymers and electronics, Ref. to IEC 62321-7-2: 2017, determination of hexavalent chromium (Cr(VI)) in polymers and electronics by the colorimetric method.
 - c. PBBs, PBDEs
 - —Ref. to IEC 62321-6: 2015, determination of polybrominated biphenyls and polybrominated diphenyl ethers in polymers by gas chromatograhy -mass spectrometry (GC-MS).

Report No. THSH19031117177-EN

Test result(s):

Part	Part Description	Results of EDXRF				Chemical confirmation	Conclusion	
No.		Pb	Cd	Hg	Cr	Br	results (mg/kg)	Conclusion
1-1	White coating	BL	BL	BL	BL	BL		Pass
1-2	Silvery metal cover	BL	BL	BL	IN		Cr(VI):Negative	Pass
2	Silvery metal	BL	BL	BL	IN		Cr(VI):Negative	Pass
3	SMD capacitor	BL	BL	BL	BL	BL		Pass
4	SMD resistor	BL	BL	BL	BL	BL		Pass
5	SMD diode	BL	BL	BL	BL	BL		Pass
6	Crystal oscillator	BL	BL	BL	BL	BL		Pass
7	SMD chip (IC)	BL	BL	BL	BL	BL		Pass
8	SMD chip (IC)	BL	BL	BL	BL	BL		Pass
9	SMD chip (IC)	BL	BL	BL	BL	BL		Pass
10	SMD chip (IC)	BL	BL	BL	BL	BL		Pass
11	SMD chip (IC)	BL	BL	BL	BL	BL		Pass
12	SMD chip (IC)	BL	BL	BL	BL	BL		Pass
13	Soldering tin (SMD)	71 (BL)	BL	BL	BL			Pass
14	PCB board	BL	BL	BL	BL	IN	PBBs: N.D. PBDEs: N.D.	Pass

Report No. THSH19031117177-EN

Remark:

- (^1) "---" = Not Applicable;
- (^2) (a) It is the result on total Br while test item on restricted substances is PBBs/PBDEs. It is the result on total Cr while test item on restricted substances is Cr(VI).
 - (b) The XRF screening test for RoHS elements-The reading may be different to the actual content in the sample be of non-uniformity composition.
 - (c) Results are obtained by EDXRF for primary screening, and further chemical testing by ICP-OES (for Pb, Cd, Hg), UV-VIS for Cr(VI) and GC/MSD (for PBBs/PBDEs) is recommended to be performed if the concentration exceeds the below warming value according to IEC 62321-3-1: 2013.

Attached table 1, XRF screening limits in mg/kg for regulated elements in various matrices:

Element	Polymer Materials	Metallic Materials	Electronics
Cd	BL≤(70-3σ)< X	BL≤(70-3σ)< X	LOD< X
	< (130+3σ) ≤OL	< (130+3σ) ≤OL	< (250+3σ) ≤OL
Pb	BL≤(700-3σ)< X	BL≤(700-3σ)< X	BL≤(500-3σ)< X
	< (1300+3σ) ≤OL	< (1300+3σ) ≤OL	< (1500+3σ) ≤OL
Hg	BL≤(700-3σ)< X	BL≤(700-3σ)< X	BL≤(500-3σ)< X
	< (1300+3σ) ≤OL	< (1300+3σ) ≤OL	< (1500+3σ) ≤OL
Br	BL≤(300-3σ)< X	N.A.	BL≤(250-3σ)< X
Cr	BL≤(700-3σ)< X	BL≤(700-3σ)< X	BL≤(500-3σ)< X

Note: 1 BL "below limit" = the result less than the limit.

- ② OL "over limit" = the result greater than the limit.
- ③ IN = inconclusive, the region where need further chemical testing by ICP-OES (for Pb, Cd, Hg), UV-VIS (for Cr(VI)) and GC/MSD (for PBBs, PBDEs).
- 4) 3σ = Repeability of the analyser at the action level.
- **(5)** LOD = Limit of detection.
- $(^3)$ (a) mg/kg = ppm = 0.0001%;
- (b) N.D. = Not detected (lower than RL);
- (c) Reporting Limit (RL) and Limit of Directive 2011/65/EU.

Parameter	Unit	Limit	Reporting Limit (RL)
Lead (Pb)	mg/kg	1000	10
Cadmium (Cd)	mg/kg	100	10
Mercury (Hg)	mg/kg	1000	10
Chromium VI (Cr VI)	mg/kg	1000	R1
Group PBBs	mg/kg	1000	R2
Group PBDEs	mg/kg	1000	R2

Report No. THSH19031117177-EN

- R1: Cr(VI) for metal sample, the reporting limit (RL) = Method Detection Limit (MDL) = 0.10 ug/cm². The reporting limit (RL) of Cr(VI) for polymers and electronics is 10mg/kg.
- R2: The reporting limit (RL) for single compound of PBBs & PBDEs is 50mg/kg.
- (d) According to IEC 62321-7-1: 2015, result on Cr(VI) for metal sample is shown as Negative, Inconclusive or Positive: Negative = Absence of Cr(VI), Inconclusive = Maybe exist Cr(VI), Positive = Presence of Cr(VI).

1 33th 4 - 1 1333113 31 31(11).				
Colorimetric result	Qualitative result			
(Cr(VI) concentration)	Qualitative result			
The sample solution is < the 0.10	The sample is negative for Cr(VI)—The Cr(VI) concentration is			
ug/cm ² equivalent comparison	below the limit of quantification. The coating is considered a			
standard solution	non-Cr(VI) based coating.			
The sample solution is ≥ the 0.10	The result is considered to be inconclusive – Unavoidable			
ug/cm ² and ≤ the 0.13 ug/cm ²	coating variations may influence the determination.			
equivalent comparison standard	Recommendation: if addition samples are available, perform a			
solutions	total of 3 trials to increase sampling surface area. Use the			
	averaged result of the 3 trials for the final determination.			
The sample solution is > the 0.13	The sample is positive for Cr(VI)—The Cr(VI) concentration is			
ug/cm ² equivalent comparison	above the limit of quantification and the statistical margin of			
standard solution	error. The sample coating is considered to contain Cr(VI).			

Report No. THSH19031117177-EN

Phthalates—DBP, BBP, DEHP & DIBP

Test Method: Ref. to IEC 62321-8: 2017

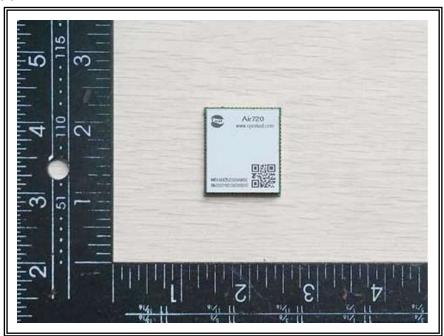
Determination of Phthalates in polymers by Gas Chromatography-Mass

Spectrometry (GC-MS)

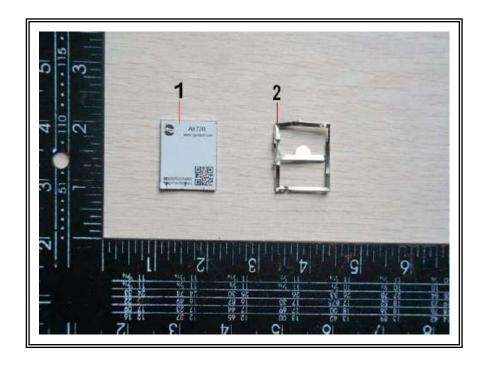
Test result:

Test item	DBP	ВВР	DEHP	DIBP
Maximum Permissible Limit (mg/kg)	1000	1000	1000	1000

Material No.	Test item (mg/kg)				
wateriai No.	DBP	ВВР	DEHP	DIBP	
1-1	N.D.	N.D.	N.D.	N.D.	
7+8+9	N.D.	N.D.	N.D.	N.D.	
10+11+12	N.D.	N.D.	N.D.	N.D.	
14	N.D.	N.D.	N.D.	N.D.	

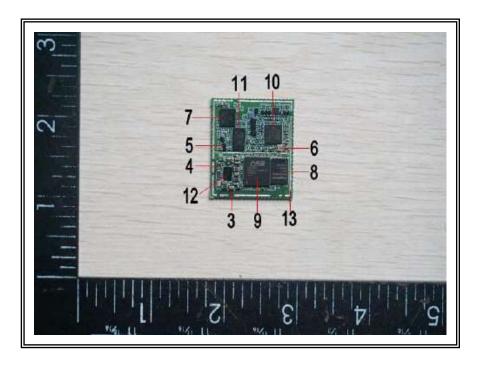

Remark: 1. Reporting Limit (RL) for BBP, DBP, DEHP, DIBP=50mg/kg.

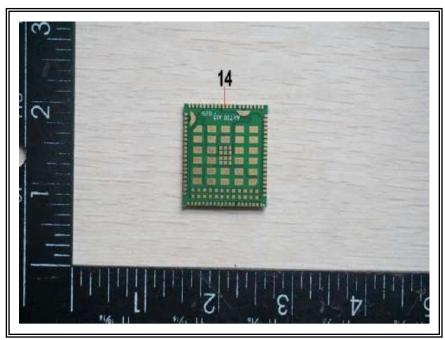
2. N.D.=Not Detected (<RL)



Report No. THSH19031117177-EN

Sample photo(s):




Test item: LET Module Tested Model: Air720

Report No. THSH19031117177-EN

****End of Report****